Non-thermal Biological Effects of Microwaves

Igor Belyaev

List of Abbreviations - Anomalous viscosity time dependence (AVTD); blood-brain barrier (BBB); catalase (CAT); Digital Enhanced (former European) Cordless Telecommunications (DECT); circularly polarized (CP); continuous wave (CW); Digital Advanced Mobile Phone System (DAMPS); discontinuous transmission (DTX); electroencephalographic (EEG); electromagnetic field (EMF); embryonic stem (ES) cells; ethidium bromide (EtBr); extremely low frequency (ELF); Gaussian Minimum Shift Keying (GMSK); Ginkgo biloba (Gb); Global System for Mobile Communication (GSM); glutathione peroxidase (GSH-Px); International Commission for Non-Ionizing Radiation Protection (ICNIRP); linearly polarized (LP); malondialdehyde (MDA); micronucleus (MN) assay; microwaves (MWs); N-acetyl-beta-d-glucosaminidase (NAG); nitric oxide (NO); non-thermal (NT); ornithine decarboxylase (ODC); phorbol ester 12-myristate 13-acetate (PMA); phosphorylated H2AX histone (γ-H2AX); power density (PD); regional cerebral blood flow (rCBF); Russian National Committee on Non-Ionizing Radiation Protection (RNCNIRP); specific absorption rate (SAR); static magnetic field (SMF); superoxide dismutase (SOD); Time Division Multiple Access (TDMA); tumor suppressor p53 binding protein 1 (53BP1); ultraviolet (UV); Universal Mobile Telecommunications System (UMTS).

Abstract - The aim of this paper is to overview the diverse biological effects of non-thermal microwaves (NT MWs) and complex dependence of these effects on various physical and biological parameters. Besides dependencies on frequency and modulation, the available data suggest dependencies of the NT MW effects on intermittence and coherence time of exposure, polarization, static magnetic filed, electromagnetic stray field, genotype, gender, physiological and individual factors, cell density during of exposure and indicate that duration of exposure may be not less important than power density (PD) for the NT MW effects. Further evaluation of these dependencies are needed for understanding the mechanisms by which NT MWs affect biological systems, planning in vivo and epidemiological studies, developing medical treatments, setting safety standards, and minimizing the adverse effects of MWs from mobile communication.

Key words - non-thermal effects of microwaves, mobile (cellular) phones.

I. INTRODUCTION

Electromagnetic exposures vary in many parameters: power (specific absorption rate, incident power density), wavelength/frequency, near field - far field, polarization (linear, circular) continues wave (CW) and pulsed fields (pulse repetition rate, pulse width or duty cycle, pulse shape, pulse to average power, etc.), modulation (amplitude, frequency, phase, complex), static magnetic field (SMF) and electromagnetic stray field at the place of exposure, overall duration and intermittence of exposure (continuous, interrupted), acute and chronic exposures. With increased absorption of energy, so-called thermal effects of microwaves (MWs) are usually observed that deal with MW-induced heating. Specific absorption rate (SAR) or power density (PD) is a main determinate for the thermal MW effects. Many other physical parameters of exposure may be important for so-called non-thermal (NT) biological effects, which are induced by MWs at intensities well below any heating [1-11]. An important question is how these physical parameters should be taken into account in safety standards.

Most often, the current safety standards are based on the thermal effects of MWs obtained in short-term (acute) exposures. In some countries, such as Russia, the NT MW effects, especially those induced during prolonged (chronic) exposures, are accepted and taken into account for establishment of the national safety standards [10-12]. It should be stressed, that in contrast to the ICNIRP (International Commission for Non-Ionizing Radiation Protection) safety standards [13], which are based on the acute thermal effects of MWs, the standards adopted by the Russian National Committee on Non-Ionizing Radiation Protection (RNCNIRP) are based on the experimental data from chronic (up to 4 month) exposures of animals to MWs at various physical parameters including intensity, frequency and modulation, which were performed in the former Soviet Union and Russia [10-12]. Since establishment of the current safety standards, the situation with exposure of general population to MWs has been changed significantly. Nowadays, most part of population is chronically exposed to MW signals from various sources including mobile phones and base stations. These exposures are characterized by low intensities, varieties of signals, and long-term durations of exposure that are comparable with lifespan. So far, the “dose” (accumulated absorbed energy that is measured in radiobiology as the dose rate multiplied by the exposure time) is not adopted for the MW exposures and SAR or PD is usually used for the guidelines. To what degree SAR/PD can be applied to the nowadays NT MW chronic exposures is not known and the current state of research demands reevaluation of the safety standards [12].

There are two main approaches to treat numerous data regarding the NT MW effects. The first one is based on the consideration of these effects dependent on various physical parameters and biological variables as has consistently been described in many experimental studies and will be partially reviewed in this paper. The second approach is based on neglecting or minimizing the experimentally observed NT MW effects based on the current state of theoretical physical science that is insufficient for comprehensive explanation of the NT MWs effects. As a result of such various treatments of
the experimental data, the safety standards significantly, up to 1000 times, vary between countries.

The literature on the NT MW effects is very broad and this paper is not intended to be a comprehensive review of this literature. There are four lines of evidence for the NT MW effects: (1) altered cell responses in laboratory in vitro studies and results of chronic exposures in vivo studies [3, 11] (this review); (2) results of medical application of NT MWs in the former Soviet Union countries [4, 7, 14, 15]; (3) hypersensitivity to electromagnetic fields (EMFs); (4) epidemiological studies suggesting increased risks of brain tumors, acoustic neuroma and T-cell lymphoma for the mobile phone users [16-18]. In this review, we will focus on the studies showing a complex dependence of the NT MW effects on various parameters.

II. EXPERIMENTAL STUDIES

Examples of diverse in vitro biological effects of NT MWs in the frequency range as used in mobile communication and at intensities below ICNIRP restrictions are given in Table 1. The first data on the NT effects of MWs in so-called millimeter range (wavelength 1-10 mm in vacuum) was obtained by Vilenskaya and co-authors [19] and Devyatkov [20]. Important regularities of the NT MW effects such as “resonance-type” dependence on frequency and “effective intensity windows”, were found in these studies as previously reviewed [2, 7-9, 21-23]. The first investigations of the NT MW effects at lower frequency ranges were performed by Blackman and colleagues [24-26] and Adey with colleagues [27, 28]. Theses groups found dependence of the NT MW effects on modulation. Since that time, other groups have confirmed the main findings of these pioneering studies as will be reviewed below.

III. FREQUENCY WINDOWS

Effects of NT MWs on repair of radiation-induced DNA breaks in E. coli K12 AB1117 were studied by the method of anomalous viscosity time dependence (AVTD) [29]. The AVTD method is a sensitive technique to detect changes in conformation of nucleoids induced by both genotoxic and stress factors [30-35]. Significant inhibition of DNA repair was found when X-irradiated cells were exposed to MWs within the frequency ranges of 51.62-51.84 GHz and 41.25-41.50 GHz. The effects were observed within two “frequency windows” displaying a pronounced resonance character in each with the resonance frequencies of 51.755 GHz and 41.32 GHz, respectively [29, 36]. These MW effects could not be explained by heating.

The resonance frequency of 51.755 GHz was stable within the error of measurements, ±1 MHz, as PD decreased from 3·10^3 to 10^-6 W/cm^2 [30, 36]. However, the half-width of the resonance decreased from 100 MHz to 3 MHz. This sharp narrowing of the 51.755 GHz resonance was followed by an emergence of new resonances, 51.675±0.001, 51.805±0.002, and 51.835±0.005 GHz, as PD decreased from 3·10^-7 to 10^-3 W/cm^2 [30, 37]. The half-widths of all these resonances including the main one, 51.755±0.001 GHz, were about 10 MHz at the PD of 10^-10 W/cm^2. These data were interpreted as a splitting of the main resonance 51.755 GHz in the MW field [30]. The MW effects were studied at different PDs and several frequencies around the resonance frequency of 51.675 GHz. This resonance frequency was found to be stable, ±1 MHz, within the PD range of 10^-10 - 10^-8 W/cm^2. Along with disappearance of the 51.675 GHz resonance response at the sub-thermal PD of 10^-6 - 10^-7 W/cm^2, a new resonance effect arose at 51.688±0.002 GHz [37]. This resonance frequency was also stable within the PD range studied. Taken together, these data strongly suggested a sharp rearrangement of frequency spectra of MW action, which was induced by the sub-thermal MWs. The half-widths of three resonances studied depended on PD, changing either from 2-3 MHz to 16-17 MHz (51.675 GHz and 51.668 GHz resonances) or from 2-3 MHz to 100 MHz (51.755 GHz resonance) [30, 37]. These data indicated that different dependencies of half-width on PD might be expected at various resonance frequencies.

Significant narrowing in resonance response was found when studying the growth rate in yeast cells [38] and chromatin conformation in thymocytes of rats [39]. In the Gründler’s study, the half-width decreased from 16 MHz to 4 MHz as PD decreased from 10^-2 to 10^-12 W/cm^2 [38].

The results of these studies with different cell types indicate that narrowing of the resonance upon decrease in PD is one of the general regularities in cell response to NT MWs. This regularity suggests that many coupled oscillators are involved non-linearly in the response of living cells to NT MWs as has been predicted by Fröhlich [40].

Gapeev and co-authors studied effects of MW exposure on the respiratory burst induced by calcium ionophore A23187 and phorbol ester 12-myristate 13-acetate (PMA) in the peritoneal neutrophils of mice [41]. MWs at the PD of 50 μW/cm^2 inhibited the respiratory burst. MW effect depended on frequency and was maximal at the frequency of 41.95 GHz.

Based on the extrapolation from the data obtained in the extremely high frequency range (30-300 GHz), the values for half-width of resonances at the frequency range of mobile phones (0.9–2 GHz) were estimated to be 1-10 MHz [35]. Effects of GSM (Global System for Mobile Communication) MWs on chromatin conformation and 53BP1 (tumor suppressor p53 binding protein 1)γ-H2AX (phosphorylated H2AX histone) DNA repair foci in human lymphocytes were studied in this frequency range [33-35]. Dependence of these MW effects on carrier frequency was observed [33, 35]. This dependence was recently replicated in independent set of experiments with lymphocytes from twenty persons in total [33, 42].

Tkalec and colleagues exposed duckweed (Lemma minor L.) to MWs at the frequencies of 400, 900, and 1900 MHz [43]. The growth of plants exposed for 2 h to the 23 V/m electric field of 900 MHz significantly decreased in comparison with the control, while an electric field of the same strength but at 400 MHz did not have such effect. A modulated field at 900 MHz strongly inhibited the growth, while at 400 MHz modulation did not influence the growth significantly. At both frequencies, a longer exposure mostly decreased the growth and the highest electric field (390 V/m) strongly inhibited the
growth. Exposure of plants to lower field strength (10 V/m) for 14 h caused significant decrease at 400 and 1900 MHz while 900 MHz did not influence the growth. Peroxidase activity in exposed plants varied, depending on the exposure characteristics. Observed changes were mostly small, except in plants exposed for 2 h to 41 V/m at 900 MHz where a significant increase (41%) was found. Authors concluded that MWs influence plant growth and, to some extent, peroxidase activity. However, the effects of MWs strongly depended on the characteristics of the field exposure such as frequency and modulation.

IV. POWER WINDOWS

It was found that the NT MW effects are observed within specific PD “windows” [20]. This type of PD dependence for the MW effects was observed in several following studies as previously reviewed [7-9, 21-23].

The data obtained in experiments with E. coli cells and rat thymocytes provided new evidence for this type of PD dependence [30, 37, 39, 44]. Window-like PD dependences of the MW effects were observed at different resonance frequencies. The most striking PD window was found at the resonance frequency of 51.755 GHz [30]. When exposing E. coli cells at the cell density of 4 10^7 cell/ml, the effect reached saturation at the PD of 10^-18-10^-17 W/cm^2 and did not change up to PD of 10^-15 W/cm^2. In these experiments, the direct measurements of PD below 10^-7 W/cm^2 were not available and lower PDs were obtained using calibrated attenuators. Therefore, some uncertainty in the evaluation of the lowest PDs was possible. The background MW radiation in this frequency range has been estimated as 10^-21-10^-19 W/m^2/Hz [45]. Based on the experimentally determined half-width of the 51.755 GHz resonance, 1 MHz [30], the background PD was estimated as 10^-19-10^-17 W/cm^2 within the 51.755 GHz resonance. The resonance MW effects on E. coli cells were observed at PD very close to the estimated background level [30, 37, 46-48]. The data suggested that the PD dependence of MW effect at specific resonance frequencies might have a threshold comparable with the background level.

Dependence of the MW effect on PD at one of the resonance frequencies, 51.675 GHz, had the shape of “window” in the PD range from 10^-18 to 10^-9 W/cm^2 [37]. It is interesting, that no MW effect was observed at sub-thermal and thermal PDs at this resonance frequency. This type of PD dependence clearly indicated non-thermal mechanism of the MW effects observed. The position of the PD window varied between different resonance frequencies and depended on cell density during exposure of cells [37].

Despite some uncertainty in the evaluation of PD at the levels below 10^-7 W/cm^2 in the referred studies the data indicated that MWs at frequencies within specific frequency windows (“resonances”) result in biological effects at very low intensities comparable with intensities from base stations and other MW sources used in mobile communication.

V. DURATION OF EXPOSURE AND TIME AFTER EXPOSURE

Bozhanova with co-authors reported that the effect of cellular synchronization induced by NT MWs depended on duration of exposure and PD [49]. The dependence on duration of exposure fitted to exponential function. The important observation was that the decrease in PD could be compensated by the increase in the duration of exposure in order to achieve the same synchronization of cells.

Kwee and Raskmark analyzed effects of MW at 960 MHz and various SARs, 0.021, 0.21, and 2.1 mW/kg on proliferation of human epithelial amnion cells [50]. These authors reported linear correlations between exposure time to MW at 0.021 and 2.1 mW/kg and the MW-induced changes in cell proliferation albeit no such clear correlation was seen at 0.21 mW/kg.

MW exposure of E. coli cells and rat thymocytes at PDs of 10^-3-10^-1 W/cm^2 resulted in significant changes in chromatin conformation if exposure was performed at resonance frequencies during 5-10 min [29, 39, 51]. Decreasing of PD by orders of magnitude down to 10^-14-10^-15 W/cm^2 could be compensated by several-fold increasing of exposure time to 20-40 min in order to achieve the same changes in chromatin conformation [47]. The duration of exposure should be longer, more than 1 h, to achieve the same effect at the lowest estimated PD of 10^-19 W/cm^2 [47]. Therefore, decreasing of PD by orders of magnitude could be compensated by several-fold increasing of exposure time and duration of exposure to NT MWs may have significantly larger role than PD.

The MW effects on E. coli cells depended also on the post-exposure time [46-48]. This dependence had an initial phase of increase about 100 min post-exposure followed by the phase, which was close to a plateau, around 100 min. A trend to decrease in effect was observed at longer times up to 300 min [46, 48].

Significant MW-induced changes in chromatin conformation were observed when rat thymocytes were analyzed in-between 30-60 min after exposure to MWs [39]. This effect nearly disappeared if the cells were incubated more than 80 min between exposure and analysis.

In recent studies, human lymphocytes from peripheral blood of healthy and hypersensitive to EMF persons were exposed to MWs from the GSM mobile phones [33, 34]. MWs induced changes in chromatin conformation similar to those induced by heat shock, which remained up to 24 h after exposure. It was found in the same and following studies that GSM MWs at the carrier frequency of 915 MHz and UMTS (Universal Mobile Telecommunications System) MWs at the 1947.4 MHz (middle channel) inhibited formation of the 53BP1/γ-H2AX DNA repair foci and these adverse effects remained during 72 h after 1-h exposure [33, 42].

The data suggested that there is a time window for observation of the MW effects, which may be dependent on endpoint measured, cell type, duration and PD of exposure.
VI. INTERMITTENCE AND COHERENCE TIME OF EXPOSURE

Diem and colleagues exposed cultured human diploid fibroblasts and cultured rat granulosa cells to intermittent and continuous MWs (1800 MHz; SAR 1.2 or 2 W/kg; different modulations; during 4, 16 and 24 h; intermittent 5 min on/10 min off or continuous wave) [52]. Comet assay was applied to analyze DNA single- and double-strand breaks. MW-induced effects occurred after 16 h exposure in both cell types and after different mobile-phone modulations. The intermittent exposure showed a stronger effect than continuous exposure.

MW exposure of L929 fibroblasts was performed by the group of Litovitz [53]. MWs at 915 MHz modulated at 55, 60, or 65 Hz approximately doubled ornithine decarboxylase (ODC) activity after 8 h. Switching the modulation frequency from 55 to 65 Hz at coherence times of 1.0 s or less abolished the effect. These results suggested that the microwave coherence effects are remarkably similar to those observed previously with extremely low frequency (ELF) magnetic fields.

VII. POLARIZATION

The effects of circularly polarized (CP) MWs were studied in E. coli cells at the frequencies from two frequency windows (resonances) that were identified using linearly polarized (LP) MWs, 51.62-51.84 GHz and 41.25–41.50 GHz. At the resonance frequency of 51.76 GHz, right-handed CP MWs inhibited repair of X-ray-induced DNA damages [36, 51]. In contrast to right-handed polarization, left-handed CP MWs had virtually no effect on the DNA repair, while the efficiency of LP MWs was in-between of two circular polarizations. Inversion in effectiveness of circular polarizations was observed at another resonance frequency, 41.32 GHz. In contrast to the frequency of 51.76 GHz, left-handed CP MWs at 41.32 GHz significantly inhibited DNA repair, while right polarization was almost ineffective. MWs of the same CP affected cells at several frequencies tested within each resonance, other CP being always ineffective [36, 44, 51]. Therefore, specific sign of effective CP, either left- or right-handed, was the attribute of each resonance. Two different types of installations, based on either spiral waveguides [51] or quarter-wave mica plates [36, 37, 44, 54, 55], were used to study the dependences of the MW effects on polarization. Similar results were observed regardless the way of producing the MWs of different polarizations.

Pre-irradiation of E. coli cells to X-rays inverted the sign of effective polarization [36, 44]. This inversion was observed for two different resonances, 41.32 and 51.76 GHz. Neither resonance frequencies, nor half-widths of the resonance changed during the inversions in effective CPs. The effects of left- and right-handed CP MWs become the same at 50 cGy [36]. At this dose, about one single stranded DNA break per haploid genome was induced and this dose was too low to damage significantly any cellular structure except for DNA. It is known that a nucleoid in E. coli cells consists of the supercoiled DNA-domains. X-ray-induced DNA breaks result in relaxation of the DNA-domains. It is believed that the majority of DNA in living cells has a right-handed helicity (B-form) but a minor part, in order of 1 %, may alternate from the B-form in the form of left-handed helix (Z-form). Supercoiling is connected with transitions between right B-form to left Z-form in these DNA sequences. The data suggested that difference in biological effects of polarized MWs might be connected with DNA helicity and supercoiling of DNA-domains.

Supercoiling of DNA-domains is changed during cell cycle because of transcription, replication, repair, and recombination. It can also be changed by means of DNA-specific intercalators such as ethidium bromide (EtBr). EtBr changes supercoiling and facilitates the transition of DNA sequences from Z-form to B-form. Preincubation of E. coli AB1157 cells with EtBr inverted the effective polarization at the resonance frequency of 51.755 GHz and right-handed MWs became more effective than left polarization [54]. EtBr changed the supercoiling of DNA-domains starting at a concentration of 1 µg/ml as measured with the AVTD in different cell types including E. coli [30, 32, 56]. The data provided further evidence that DNA may be a target for the NT MW effects.

Investigations of NT MW effects at 15 resonances in E. coli cells and 2 resonances in Wistar rat thymocytes provided evidence that one of two circular polarizations is always more effective than another one [36, 37, 39, 44, 46, 51, 54, 55, 57, 58]. These data are summarized in Table 2. In all experiments, the effect of linear polarized MWs was in-between of effects of two circular polarizations.

Obviously, the difference in effects of right- and left polarizations could not be explained by heating or by mechanism dealing with “hot-spots” due to unequal SAR distribution. The data about the difference in effects of differently polarized MWs, the inversion of effective circular polarization between resonances and after irradiation of cells with X-rays and incubation with EtBr provided strong evidence for the non-thermal mechanisms of MW effects. These data indicated either an asymmetrical nature of the target for the NT MW effects, which is presumably chromosomal DNA [36], or an existence of selection rules on helicity if quantum-mechanical approach is applied [44].

VIII. MODULATION

There is experimental evidence for the role of modulation in the diverse biological effects of NT MW both in vitro and in vivo [28, 41, 59-68]. Examples include different types of modulation such as amplitude-, speech and phase modulations. Amplitude modulation at 16 Hz but not 60 Hz or 100 Hz modulated MW, 450 MHz, increased activity of ODC [63]. Speech-modulated 835 MHz MWs produced no effect on ODC as compared to typical signal from a TDMA (Time Division Multiple Access) digital cellular phone [60]. Phase-modulated GSM-1800 MWs (Gaussian Minimum Shift Keying, GMSK) at 1.748 GHz, induced micromelane in human lymphocytes while CW MWs did not [64].

In the study by Gapeev and co-authors, stimulation of the respiratory burst was observed in the peritoneal neutrophils of...
mice upon modulation of MWs at 41.95 GHz, 50 µW/cm², with the frequency of 1 Hz [41]. Only this modulation out of four tested (0.1, 1, 16, and 50 Hz) resulted in stimulation of the respiratory burst.

Huber with coauthors investigated effects of MWs similar to those used in mobile communication, a “base-station-like” and a “handset-like” signal (10 g tissue-averaged spatial peak-specific absorption rate of 1 W/kg for both conditions), on waking regional cerebral blood flow (rCBF) in 12 healthy young men [65]. The effect depended on the spectral power in the amplitude modulation of the carrier frequency such that only “handset-like” MW exposure with its stronger low-frequency components but not the “base-station-like” MW exposure affected rCBF. This finding supported previous observations of these authors [66] that pulse modulation of MWs is necessary to induce changes in the waking and sleep EEG, and substantiated the notion that pulse modulation is crucial for MW-induced alterations in brain physiology.

Markkanen and colleagues exposed cdc48-mutated Saccharomyces cerevisiae yeast cells to 900 or 872 MHz MWs, with or without exposure to ultraviolet (UV) radiation, and analyzed apoptosis [67]. Amplitude modulated (217 pulses per second) MWs significantly enhanced UV induced apoptosis in cells, but no effect was observed in cells exposed to unmodulated fields at the identical time-average SAR of 0.4 W/kg that was lower than the ICNIRP safety standards.

Persson with colleagues studied effects of MWs of 915 MHz as CW and pulse-modulated with different pulse power and at various time intervals on permeability of the blood-brain barrier (BBB) in Fischer 344 rats [68]. Albumin and fibrinogen were demonstrated immunochemically and classified as normal versus pathological leakage. The CW-pulse power varied from 0.001 W to 10 W and the exposure time from 2 min to 960 min. The frequency of pathological rats significantly increased in all exposed rats. Grouping the exposed animals according to the level or specific absorption rate of 1 W/kg for both conditions), on unmodulated fields at the identical time-average SAR of 0.4 W/kg that was lower than the ICNIRP safety standards.

Litovitz and colleagues found that the ELF magnetic noise inhibited the effects of MWs on ODC in L929 cells [61]. The ODC enhancement was found to decrease exponentially as a function of the noise root mean square amplitude. With 60 Hz amplitude-modulated MWs, complete inhibition was obtained with noise levels at or above 2 µT. With the DAMPS (Digital Advanced Mobile Phone System) cellular phone MWs, complete inhibition occurred with noise levels at or above 5 µT. Further studies by the same group revealed that the superposition of ELF noise inhibited hypoxia de-protection caused by long term repeated exposures of chick embryos to MWs [77].

IX. ELECTROMAGNETIC ENVIRONMENT

Hypothetically, background EMF might be of importance for the MW effects. This hypothesis is based on the experimental observations that SMF, ELF magnetic fields, and MWs at low intensities induced similar effects in cells under specific conditions of exposure [1, 34, 69-71]. Despite very little has been done for mechanistic explanation of such effects, there are attempts to consider the effects of EMFs in a wide frequency range in the frames of the same physical models [72-76].

Usakov with co-authors exposed E. coli cells to MWs at the PD of 10⁻¹⁰ W/cm² and the frequencies of 51.675, 51.755 and 51.835 GHz [55]. In this study, cells were exposed to MWs at various values of SMF: 22, 49, 61, or 50 µT. The authors observed dependence of the MW effects on SMF during MW exposure.

If confirmed, the observations on dependence of the NT MW effects on SMF and ELF stray field would be of significant interest for further development of physical theory for the NT MW effects and development of mobile communication with minimized health risks.

X. CELL-TO-CELL INTERACTION IN RESPONSE TO MWs

The effects of NT MWs at the resonance frequency of 51.755 GHz on conformation of nucleoids in E. coli cells
were analyzed in dependence on cell density during exposure [47]. The per-cell-normalized effect of MWs increased by a factor of 4.7±0.5 on average as cell density increased by one order of magnitude, from 4·10^7 to 4·10^8 cells/ml. These data suggested a co-operative nature of cell response to MWs, which is based on cell-to-cell interaction during exposure. This suggestion was in line with the observed partial synchronization of cells after exposure to MWs.

The co-operative nature of cell response to MW at the resonance frequency of 51.755 GHz was confirmed in further studies with E. coli cells [30, 37, 48]. In addition, dependence of the per-cell-normalized effect on cell density was found for two other resonances, 51.675 GHz and 51.688 GHz. These data suggested that the dependence on the cell density during exposure is a general attribute of the resonance response of E. coli cells to NT MWs. At the cell density of 4·10^8 cells/ml, the average intercellular distance was approximately 13 µm that is 10 times higher than the linear dimensions of E. coli cells [47, 48]. Therefore, no direct physical contact seemed to be involved in the cell-to-cell interaction. Two mechanisms, biochemical and electromagnetic, were considered for account for the co-operative nature in the resonance response to weak EMF in wide frequency range including ELF, MWs and ionizing radiation [47, 78, 79]. The first one, biochemical, is based on release of secondary chemical messengers (ions, radicals, or molecules) by those cells, which were directly targeted. Via diffusion, these messengers can induce response in other cells. The second mechanism, electromagnetic, is based on reemission of secondary photons. According to this mechanism, reemitted photons can induce response in other cells if the intercellular distance is shorter than the length of photon absorption. Our experimental data on MW effects fitted better to the electromagnetic mechanism but a combination of two mechanisms was also possible [47, 48]. In particular, radicals with prolonged lifetimes might be involved in the observed cell-to-cell communication during response to EMF [80].

The absorption length of photons with the frequencies of 10^{12}-10^{13} Hz corresponds to the intercellular distance at the cell density of 5·10^9 cells/ml, at which saturation in the dependences of the EMF effects on the cell density was observed [47, 48, 80, 81]. Such photons may be involved in cell-to-cell communication according to the electromagnetic mechanism and in agreement with the prediction of Fröhlich that biosystems support coherent excitations within frequency range of 10^{11}-10^{12} Hz [40]. From this point of view, cell suspension may respond to NT MWs as a whole. In this case, the number of the exposed cells should be large enough to facilitate cell-to-cell communication during the responses to MWs at specific parameters of exposure such as frequency, modulation, and polarization. Interestingly, the cell density for saturation of both MW and ELF effects was about 5·10^8 cell/ml that is close to cell densities in soft tissues of eukaryotes [48, 80]. Such density of cells in the tissues may be important for regulation of living systems by electromagnetic cell-to-cell communication. Cellular membranes and DNA have been considered as possible sources of coherent excitations and photons, which may be involved in electromagnetic cell-to-cell communication [30, 40, 80].

PD dependences of the MW effect at the 51.755 GHz resonance frequency were considerably different between two cell densities, 4·10^7 cells/ml and 4·10^8 cells/ml [30]. However, the resonance frequency of 51.755 GHz did not shift with the changes in cell density. The half-width of the 51.755 GHz resonance did not depend on cell density either. Contrary to the 51.755 GHz resonance response, the half-width of the 51.675 GHz resonance depended on cell density [37]. The data suggested that intracellular interaction during the NT MW exposures at some specific frequencies might affect subcellular targets for NT MWs. This target is presumably chromosomal DNA that is organized in the DNA-domains [36, 58, 72].

In all studies concerning dependence of the MW effects on cell density, the cells occupied a negligible part of the exposed volume and could not change the absorption of MWs even at the highest cell densities [30, 37, 47, 48]. Striking difference in the cell responses at various cell densities provided further evidence for non-thermal mechanism of the observed MW effects.

Significant MW effect on synchronization of Saccharomyces carlsbergensis yeast cells were observed by Golant and co-authors [82]. Exposure to MWs at 30 µW/cm^2 and 46 GHz induced synchronization as measured by cell density and bud formation. Authors assumed that MWs induced cell-to-cell interaction resulting in the observed synchronization.

XI. GENETIC BACKGROUND

We studied effects of MWs on E. coli cells of three isogenic strains with different length of chromosomal DNA [58]. Bacterial chromosomal DNA in N99 wild type cells was lengthened by inserting DNA from λ and λimm434bio10 phages. Lysogenic strains N99(λ) and N99(λ,λimm434bio10) obtained were used for MW exposure along with the wild type N99 strain. The response of each strain was studied at 10-17 frequencies inside frequency ranges of 41.24-41.37 GHz and 51.69-51.795 GHz. Clear resonance responses to MWs at 10^{-10} W/cm^2 were observed for each strain in both frequency ranges. Significant shifts of both resonance frequencies were found between strains (Table 3). The shifted resonances had the same amplitude and half-width as for N99 cells [58]. Upon shifting, no changes in effective circular polarization within each shifted resonance were observed (Table 3). The shifts in resonance frequencies could not be explained by activity of additional genes inserted with the phage DNA. On the other hand, the theoretical consideration based on oscillations of the DNA-domains regarding a whole nucleoid provided a good correlation between the increasing in the DNA length and the shifts in resonances [58].

A detailed analysis of MW effects on E. coli AB1157 cells at 10^{-10} W/cm^2 and various frequencies revealed the resonance frequency of 51.755±0.001 GHz [30]. This value was statistically significantly different from the resonance frequency of 51.765±0.002 in response of E. coli N99 cells to MWs in the same frequency range [30]. It should be noted
that both strains, AB1157 and N99, are considered as wild type strains. Nevertheless, these strains are different in their genotypes by several specific gene markers [29, 83]. These data suggested that strains of different origin, even being considered as wild type strains, might have different resonance responses to NT MWs.

Stagg with colleagues exposed tissue cultures of transformed and normal rat glial cells to packet-modulated MWs (TDMA that conforms to the North American digital cellular telephone standard) at 836.55 MHz [84]. Results from the DNA synthesis assays differed for these two cell types. Sham-exposed and MW-exposed cultures of primary rat glial cells showed no significant differences for either log-phase or serum-starved condition. C6 glioma cells exposed to MWs at 5.9 \(\mu \text{W/g SAR} \) (0.9 mW/cm\(^2\)) exhibited small (20-40\%) but significant increases in 38\% of \([3\text{H}] \)-thymidine incorporation experiments.

Repacholi with co-authors chronically exposed wild-type mice and \(\text{E. coli} \) strain 25669 to \(\text{GSM-217} \) MWs at 0.9 MHz with a pulse repetition frequency of 217 Hz and a pulse width of 0.6 ms [85]. Incident power densities were 2.6-13 W/m\(^2\) and SARs were 0.008-4.2 W/kg, averaging 0.13-1.4 W/kg. The lymphoma risk was found to be significantly higher in the exposed transgenic mice. No effects were seen in the wild type mice.

Markkanen with colleagues found that MWs affected the UV-induced apoptosis in \(\text{Saccharomyces cerevisiae} \) yeast cells KFY437 (cdc48-mutant) but did not modify apoptosis in KFY417 (wild-type) cells [67].

Czyz with colleagues exposed pluripotent embryonic stem (ES) cells of wild-type and deficient for the tumor suppressor p53 to pulse modulated GSM MWs at 1.71 GHz [86]. Two dominant GSM modulation schemes (GSM-217 and GSM-Talk), which generate temporal changes between GSM-Basic (active during talking phases) and GSM-DTX (discontinuous transmission, which is active during listening phases thus simulating a typical conversation), were applied to the cells at and below the ICNIRP safety standards. GSM-217 MWs induced a significant upregulation of mRNA levels of the heat shock protein, hsp70 of p53-deficient ES cells differentiating in vitro, parallelled by a low and transient increase of c-jun, c-myc, and p21 levels in p53-deficient, but not in wild-type cells. Theses data substantiated the notion that the genetic background determines cellular responses to GSM MWs.

XII. GENDER-RELATED AND INDIVIDUAL DIFFERENCES

There are studies indicating that MWs may exert a gender-related influence on brain activity [87, 88]. Papageorgiou with co-authors investigated the gender-related influence of MWs, similar to that emitted by GSM900 mobile phones, on brain activity [87]. Baseline electroencephalographic (EEG) energy of males was greater than that of females, while exposure to MWs decreased EEG energy of males and increased that of females. Memory performance was invariant to MW exposure and gender influences. Smythe and Costall reported the effects of mobile phone exposure on short- and long-term memory in male and female subjects [88]. The results showed that males exposed to an active phone made fewer spatial errors than those exposed to an active phone condition, while females were largely unaffected. These results further indicated that mobile phone exposure has functional consequences for human subjects, and these effects appear to be sex-dependent.

We analyzed effects of GSM MWs on chromatin conformation in human lymphocytes from peripheral blood [35]. The MW effects varied between individuals. 30-min exposure to MWs at 900 and 905 MHz resulted in statistically significant condensation of chromatin in lymphocytes from one out three tested donors. This condensation was similar to effects of heat shock within the temperature window of 40-44°C. Stronger effects of MWs were found following 1-h exposure. In replicated experiments, cells from 4 out 5 donors responded to 905 MHz. Statistically significant response to 915 MHz was observed in cells from one out five donors. Dependent on donor, condensation, 3 donors, or decondensation, 1 donor, of chromatin was found in response to 1-h exposure. The effects of MWs correlated statistically significantly with the effects of heat shock and the initial state of chromatin before exposure.

Significant individual variations in effects of GSM and UMTS MWs on chromatin conformation and 53BP1/\(\gamma\text{-H2AX} \) DNA repair foci in human lymphocytes were observed in further studies [33, 34, 42]. Despite some trends to different response between lymphocytes from hypersensitive to EMF subjects and matched healthy controls [34], these differences were not statistically significant between groups [33, 34, 42]. Significant variations in response of cells were observed in both hypersensitive and control groups of subjects. These studies provided unequivocal evidence that GSM and UMTS MWs induce adverse effects in lymphocytes from hypersensitive subjects. One cannot exclude that compensatory reactions are less efficient in the hypersensitive providing stronger connection of reactions to NT MWs at the cellular level with symptoms of hypersensitivity.

Zotti-Martelli with colleagues exposed peripheral blood lymphocytes from nine different healthy donors for 60, 120 and 180 min to CW MWs with a frequency of 1800 MHz and PDs of 5, 10, and 20 mW/cm\(^2\) and analyzed DNA damage using micronucleus (MN) assay [89]. Both spontaneous and induced MN frequencies varied in a highly significant way among donors, and a statistically significant increase of MN, although rather low, was observed dependent on exposure time and PD. Authors concluded that MWs are able to induce MN in short-time exposures to medium PD fields. The data analysis highlighted a wide inter-individual variability in the response, which was replicated in further experiments.

XIII. PHYSIOLOGICAL VARIABLES

The importance of physiological variables, which may include all conditions of cell culture growth such as aeration, the composition of the growth and exposure media has been previously reviewed [8].

In our investigations, \(\text{E. coli} \) cells were exposed to CP or LP MWs (100 \(\mu\text{W/cm}^2\)) at the resonance frequencies of 41.32
cells were more sensitive, especially at the cell densities exponentially growing cells. Partially synchronized stationary [48]. Relatively weak response to MWs was observed in the state of nucleoids, decondensation or condensation, respectively. In the logarithmic phase of growth during exposure to MWs in the PD range of 10^{-18} to $3 \cdot 10^{-3}$ W/cm2 at various cell densities.

Higher variability in effects was observed for logarithmic phase and effects were more stable for the stationary phase that is characterized by partial synchronization of cells [46, 47]. There was no effect at all if cells were exposed at the end of the logarithmic phase where the MW effects changed their direction from inhibition to stimulation [47]. Another peculiarity was observed at the very beginning of the logarithmic stage, where the condensation of chromatin induced by MWs was very weak. The AVTD data were confirmed by the electrophoretic analysis of proteins bound to DNA [46]. The main feature of the effect in the stationary phase was a decrease in the quantity of several unidentified DNA-bound proteins with molecular weights of 61, 59, 56, 26, and 15 kDa. In contrast, the main trend was an increase in some proteins, 61, 56, 51 and 43 kDa after exposure at the logarithmic phase. The decrease or increase in the level of proteins bound to DNA correlated with the observed changes in the state of nucleoids, decondensation or condensation, respectively.

The MW effects was studied both at stationary and logarithmic phase of growth during exposure to MWs in the PD range of 10^{-18} to $3 \cdot 10^{-3}$ W/cm2 at various cell densities [48]. Relatively weak response to MWs was observed in exponentially growing cells. Partially synchronized stationary cells were more sensitive, especially at the cell densities above 10^7 cell/ml. The data suggested that the co-operative responses of cells to MWs vary in dependence on phase of growth.

Recent data by Ushakov and colleagues indicated that the MW effects on *E. coli* cells depended on concentration of oxygen in the cell suspension during exposure [55]. This dependence might suggest that oxygen concentration should be indicated in order to improve reproducibility in replication studies.

XIV. ANTIOXIDANTS AND RADICAL SCAVENGERS INHIBIT EFFECTS OF MWs

Lai and Singh described effects of MWs on the rat brain cells as measured using a microgel electrophoresis assay [90]. These effects were significantly blocked by treatment of rats either with the spin-trap compound N-tert-butyl-phenylmethylchloroformate or with melatonin that is potent free radical scavenger and antioxidant [91]. These data suggested that radicals might be involved in the effects of MWs. Other groups confirmed this suggestion in further studies.

Oktem with colleagues exposed rats to MWs from GSM900 mobile phone with and without melatonin treatment [92]. Malondialdehyde (MDA), an index of lipid peroxidation, and urine N-acetyl-beta-d-glucosaminidase (NAG), a marker of renal tubular damage, were used as markers of oxidative stress-induced renal impairment. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were studied to evaluate the changes of antioxidant status. In the MW-exposed group, while tissue MDA and urine NAG levels increased, SOD, CAT, and GSH-Px activities were reduced. Melatonin treatment inhibited these effects. The authors concluded that melatonin might exhibit a protective effect on mobile phone-induced renal impairment in rats.

Ozguner with colleagues exposed Wistar-Albino rats to MWs from GSM900 mobile phone with and without melatonin and analyzed histopathologic changes in skin [93]. MW induced increase in thickness of stratum corneum, atrophy of epidermis, papillomatosis, basal cell proliferation, granular cell layer (hypergranulosis) in epidermis and capillary proliferation. Impairment in collagen tissue distribution and separation of collagen bundles in dermis were all observed in exposed animals as compared to the control group. Most of these changes, except hypergranulosis, were prevented with melatonin treatment. The authors concluded that exposure to GSM900 MWs emitted by mobile phones caused mild skin changes and melatonin treatment could reduce these changes.

Ayata et al. analyzed the effects of 900 MHz MWs with and without melatonin on fibrosis, lipid peroxidation, and antioxidant enzymes in rat skin [94]. The levels of MDA and hydroxyproline and the activities of SOD, GSH-Px, and CAT were. MDA and hydroxyproline levels and activities of CAT and GSH-Px were increased significantly in the exposed group without melatonin and decreased significantly in the exposed group with melatonin. SOD activity was decreased significantly in the exposed group and this decrease was not prevented by the melatonin treatment. The authors assumed that the rats irradiated with MWs suffer from increased fibrosis and lipid peroxidation and that melatonin can reduce the fibrosis and lipid peroxidation caused by MWs.

Ilhan with co-authors investigated oxidative damage in brain tissue of rats exposed to GSM900 MWs with and without pretreatment with Ginkgo biloba (Gb) [95]. MWs induced oxidative damage measured as: (i) increase in MDA and nitric oxide (NO) levels in brain tissue, (ii) decrease in brain SOD and GSH-Px activities and (iii) increase in brain xanthine oxidase and adenosine deaminase activities. These MW effects were prevented by the Gb treatment. Furthermore, Gb prevented the MW-induced cellular injury in brain tissue revealed histopathologically. Authors concluded that reactive oxygen species may play a role in adverse effects of GSM900 MWs and Gb prevents the MW-induced oxidative stress by affecting antioxidant enzymes activity in brain tissue.

XV. SUMMARY OF EXPERIMENTAL STUDIES

Numerous experimental data have provided strong evidence for NT MW effects and have also indicated several regularities in these effects: dependence of frequency within...
specific frequency windows of “resonance-type”; dependence on modulation and polarization; dependence on intensity within specific intensity windows including super-low PDs comparable with intensities from base stations/masts; narrowing of the frequency windows with decrease in intensity; high sensitivity of the NT MW effects to the duration of exposure; dependence on cell density that suggests cell-to-cell interaction during response to NT MWs; dependence on physiological conditions during exposure and a potential of radical scavengers/antioxidants to minimize the MW effects; genomic differences can influence response to NT MWs; there are not yet confirmed observations that oxygen concentration, SMF and EMF stray field during exposure may be of importance for the effects of NT MWs.

XVI. REPLICATION STUDIES

Obviously, not taking into account the dependences the NT MW effects on a number of physical parameters and biological variables may result in misleading conclusions regarding the reproducibility of the NT MW effects. Especially important might be the observations that NT MWs could inhibit or stimulate the same functions dependent on conditions of exposure [2]. Under different conditions of exposure, MWs either increased or decreased the growth rate of yeast cells [8], the radiation-induced damages in mice [96], the respiratory burst in neutrophils of mice [41], the condensation of nucleoids in E. coli cells [46, 47] and human lymphocytes [35]. Potentially bi-directional effects of MWs should be taken into account in replication studies.

Despite of considerable body of studies with NT MWs in biology, only a few studies were performed to replicate the original data on the NT MW effects. It should be noted, that these “replications” are usually not comparable with the original studies because of either missing description of important parameters of exposure or significant differences in these parameters between original study and replication.

One well-known attempt to replicate the results of Gründler was the study by Gos and co-authors [97]. No MW effects were observed in this study. However, the deviations from the Gründler’s protocol might be a simple reason for poor reproducibility. For example, synchronized cells were used in studies of Gründler. Contrary to the Gründler’s original protocol, Gos used exponentially growing cells. If the MW effects in yeast cells are dependent on stage of growth, cell density and intercellular interactions as it has been described for E. coli cells [30, 37, 46, 47], no response should be expected in the logarithmic phase of growth. Gos and colleagues used S. cerevisiae strain with the auxotrophy mutations for leucine and uracil. Gründler used the wild type strain. It might suggest another cause for the deviations between the data of Gründler and Gos. Despite orientation of SMF in respect to electric and magnetic components of MWs was the same, the values of SMF were different. The stray ELF field was 120 nT in the study by Gos, that is higher than usually observed background fields, < 50 nT. The spectral characteristics of the background fields, which were described only in the study by Gos, might be also different. In addition, the conditions of cell cultivation might vary between studies; for example, the data on oxygen concentration in media used in both studies is not available.

Amount of already known physical and biological variables that are important for reproducibility of the NT MW effects seem to be far beyond the limits of usually controlled parameters in biological experiments. The knowledge of some of these variables is based on consistent findings following from experimental studies of different research groups. Further evaluation of variables that are important for the NT MW effects would benefit from the developing of the physical and molecular biological models for the MW effects.

Most reviews of the experimental studies do not include analysis of various biological variables and physical parameters when comparing the data on NT MW effects from different studies. As result, misleading conclusion is often made that MWs at NT levels produce no “reproducible” effects. Bearing in mind the importance of several critical physical and biological variables for reproducibility of the MW effects and based on the available replication studies, we would suggest the next analogy in response to the claims that there are no reproducible NT MW effects. These claims would be similar to a situation if one would use a TV-set with a wrong broadcasting system, for example PAL/SECAM in U.S. or NTSC in Europe, and based on seeing nothing would conclude that there is no stable TV broadcasting in U.S./Europe.

XVII. POSSIBLE MECHANISMS

The fundamental question is how MWs at so low intensities affect living systems? Most probably, the physical mechanisms of the NT MW effects must be based on quantum-mechanical approach and physics of non-equilibrium and nonlinear systems [40, 73, 98-100].

Analyzing theoretically our experimental data on the MW effects at super-low intensities we concluded that these effects should be considered using quantum-mechanical approach [47]. Reanalysis of our data by Binhi resulted to the same conclusion [73]. This is in line with the fundamental quantum-mechanical mechanism that has been suggested by Fröhlich [40]. Our data indicated also that chromosomal DNA is a target for interaction with MWs [36, 54, 58].

The length of genomic DNA is much longer than the dimension of surrounding compartment. For example, there is about 1.8 m of DNA in a human genome that is compacted in interaction with other compounds such as proteins, RNA and ions to fit into a nucleus with a characteristic diameter of 5-10 µm. Importantly, concentration of DNA in the nuclei is higher than in crystallization solutions for DNA, 50-100 mM versus 10-30 mM DNA, respectively. Whether DNA is organized in nuclei as a liquid crystal remains to be investigated. However, it is clear that DNA in a living cell cannot be considered as an aqueous solution of DNA molecules in a thermodynamic equilibrium.

The quantum-mechanical physical model for primary interaction of MWs with DNA has been proposed [101]. We hypothesized that genomic DNA contain two different codes [78]. The first one is well-known genetic triplet code for coding the genes. The second one is a “physical code” that
determine the spectrum of natural oscillations in chromosomal DNA including electromagnetic, mechanical and acoustic oscillations, which are hypothetically responsible for regulation of gene expression at different stages of ontogenesis and for genomic rearrangements in evolution [78]. The physical model describing these coupled oscillations in chromosomal DNA has been proposed [58]. This model helps to resolve so-called C-paradox that addresses the issue of a genome size, so-called C-value. Only few percent of DNA encodes genes in almost all eukaryotic genomes. The same amount of DNA is involved in regulation of gene expression by known biochemical mechanisms. The function of the rest of DNA, which does not depend on complexity of eukaryotic species and is represented by noncoding repetitive DNA sequences, is not understood in molecular biology providing a basement for hypotheses such as “junk DNA”. The function of this major part of genomic DNA became clear given that the whole genomic DNA is responsible for the creation of the natural spectrum of oscillations that is hypothetically a main characteristic of each biological species [78].

XVIII. WERE THE REAL SIGNALS USED IN MOBILE COMMUNICATION TESTED FOR ADVERSE EFFECTS?

Based on available experimental data, it is believed that both beneficial and adverse health effects can be induced by NT MWs dependent on conditions of exposure [2-5, 7, 11, 14-16]. In contrast to thermal effects of MWs that can be described solely by SAR/PD, several other parameters are important for the NT MW effects.

Multiple sources of mobile communication result in chronic exposure of significant part of general population to MWs at the non-thermal levels. Therefore, the ICNIRP safety standards, which are based on thermal effects in acute exposures cannot protect from the chronic exposures to NT MW from mobile communication [13].

Most of the real signals that are in use in mobile communication have not been tested so far. Very little research has been done with real signals and for durations and intermittences of exposure that are relevant to chronic exposures from mobile communication. In some studies, so-called “mobile communication-like” signals were investigated that in fact were different from the real exposures in such important aspects as intensity, carrier frequency, modulation, polarization, duration and intermittence. How relevant such studies to evaluation of adverse health effects from MWs of mobile communication is not known. For example, GSM users are exposed to MWs at different carrier frequencies during their talks. There are 124 different channels/frequencies, which are used in Europe for GSM900. They differ by 0.2 MHz in the frequency range from 890 MHz to 915 MHz. Mobile phone users are supplied by various frequencies from base stations depending on number of connected users. The base station can change the frequency during the same talk. GSM uses GMSK modulation (Gaussian Minimum Shift Keying). Contrary to GSM phones, UMTS mobile phones of the 3rd generation (3G) use essentially QPSK (Quadrature Phase Shift Keying) modulation and irradiate wide-band signals with the bandwidth of 5 MHz. UMTS MWs may hypothetically result in a higher biological effect because of eventual “effective” frequency windows within the bands.

We tested some of the real signals from GSM900 and UMTS mobile phones. Frequency-dependent effects of GSM MWs on the DNA repair 53BP1/γH2AX foci and chromatin conformation in human lymphocytes were observed in replicated studies [33, 34, 42]. UMTS MWs induced significant adverse effects in human lymphocytes stronger or the same as effects of heat shock at 41-43°C and GSM MWs at the carrier frequency of 915 MHz [42]. The results obtained were in line with our hypothesis that UMTS MWs may affect cells more efficiently than GSM MWs because of the nature of signal.

XIX. URGENT NEEDS AND FURTHER PERSPECTIVES

At present, new situation arose when significant part of general population is exposed chronically (much longer than previously investigated durations of exposures) to NT MWs from different types of mobile communication including GSM and UMTS/3G phones and base stations, WLAN (Wireless Local Area Networks), WPAN (Wireless Personal Area Networks such as Bluetooth), DECT (Digital Enhanced (former European) Cordless Telecommunications) wireless phones. It should be anticipated that some part of population, such as children, pregnant women and groups of hypersensitive persons could be especially sensitive to the NT MW exposures. It is becoming more and more clear that the SAR concept that has been widely adopted for safety standards may not be useful alone for the evaluation of health risks from MWs of mobile communication. How the role of other exposure parameters such as frequency, modulation, polarization, duration, and intermittence of exposure should be taken into account is an urgent question to solve. Solving this question would greatly benefit from the knowledge of the physical mechanisms of the NT MW effects. The understanding of mechanisms for the NT MW effects is far away from comprehensive. Many questions remain to be addressed such as whether resonance effects of MWs depend on electromagnetic noise and SMF during exposure.

Besides fundamental importance, the development of comprehensive mechanisms is socially important for two main reasons. The first one is development of new medical treatment modalities using MWs. The second reason is accumulating evidence for adverse health effects of the NT MWs [3, 11]. So far, most laboratory and epidemiological studies did not control important features of the NT MW effects as described above and therefore, only limited conclusion regarding health effects of MWs from mobile communication can be drawn from these studies.

It should be noted that one group of epidemiologists with a long-lasting experience in studying relationship between mobile phone usage and cancer risk have consistently been concerned regarding importance of various MW signals and exposure durations [18, 102-104]. The group of Hardell was the first epidemiologic group in attempting to study separately the MW signals from cordless phones, analogue phones and
digital phones. As a rule, analogue phones had the highest association with the cancer risk. Cordless phones were associated with the risk for brain tumors, acoustic neuroma, and T-cell lymphoma stronger or in the same degree as digital and analogue phones despite significantly lower SAR values were produced by cordless phones [16, 18, 103, 104]. This important result can be considered as an independent conformation, at the epidemiological level, of the observations from specially designed in vitro and in vivo studies that the NT MW effects depend not solely on SAR/PD but also on other parameters. It should be also noted that epidemiological data are controversial and methodological differences are a subject of debates between various research groups [16, 105]. However, the approach of the Hardell’s group is more valid from the mechanistic point of view and this should be taken into account when comparing with results with other groups that ignore or minimize the complex dependencies of the NT MW effects on several parameters/variables [105].

The data about the effects of MWs at super low intensities and significant role of duration of exposure in these effects along with the data showing that adverse effects of NT MWs from GSM/UMTS mobile phones depend on carrier frequency and type of the MW signal suggest that MWs from base-stations/masts can also produce adverse effects at prolonged durations of exposure and encourage the mechanistic in vitro studies using real signals from base stations/masts. Further investigations with human primary cells under well controlled conditions of exposure, including all important parameters as described above, are urgently needed to elucidate possible adverse effects of MW signals that are currently used in wireless communication, especially in new technologies such as UMTS mobile telephony.

The dependence of adverse effects of NT MWs from GSM/UMTS mobile phones on carrier frequency and type of signal should be taken into account in settings of safety standards and in planning of in vivo and epidemiological studies. One important conclusion stemming from the available in vitro and in vivo studies is that epidemiological studies should not be given priority before proper design of these studies will be available as based on mechanistic understanding of the NT MW effects. This conclusion is based on two principle arguments. First, it is almost impossible to select control unexposed groups because whole population in many countries is exposed to wide range of MW signals from various sources such as mobile phones and base stations/masts of various kinds, WLAN, WPAN, DECT wireless phones and given that duration of exposure (must be at least 10 years for cancer latency period) may be more important for the adverse health effects of NT MWs than PD/SAR. Second, the adverse effects of “detrimental” signals are masked because people are exposed to various signals/frequencies including non-effective or even hypothetically beneficial. From this point of view, current epidemiological studies are either inconclusive, if results are negative, or underestimate significantly the hazard of using specific signals, if results are positive.

The joining of efforts of scientific groups within national or international programs is needed for mechanistic studies of the NT MW effects. To be based on the available science regarding biological action of NT MWs, this joining should involve scientists having long-lasting experience in studying the NT MW effects. Otherwise, misleading conclusions or inconclusive results may be expected.

RNCRIRP proposed that guidelines for NT MWs should be further developed by studies based on the next priorities [12]: (1) Acute and chronic bioeffects of real MW signals as currently in use (GSM, UMTS/3G phones and base stations…) should be tested in experiments with primary human cells and animals; (2) Studies with volunteers under controlled conditions of chronic exposures. Complaints by phone users cannot be used for objective evaluation of health effects from mobile phones. There is a need for correlation of these complaints with the data obtained in studies using the objective criteria. The data from the acute exposures of volunteers have very limited value because possible accumulation of effects during real chronic exposures is not evaluated. (3) Development of reliable and relevant methods to control personal exposures. (4) Epidemiological investigations of the postponed adverse health effects on various functions of organism and diseases including neurodegenerative diseases and cancer.

Because NT MWs affect not only brain cells, but also blood cells [33-35, 64], skin and fibroblasts [52, 53, 93, 106], stem cells [86, 107], reproductive organs and sperm quality [108-110] the using of hands-free cannot minimize all adverse health effects. Possibilities to minimize the adverse effects of NT MWs using various biophysical and biochemical approaches should be studied.

Identification of those signals and frequency channels/bands for mobile communication, which do not affect human cells, is needed as a high priority task for the development of safe mobile communication.

ACKNOWLEDGEMENTS

Financial support of the Swedish Council for Working Life and Social Research, the Swedish Radiation Protection Authority, the Russian Foundation for Basic Research is gratefully acknowledged.
TABLE1

EXAMPLES OF DIVERSE BIOLOGICAL EFFECTS OF NT MWs IN THE FREQUENCY RANGE AS USED IN MOBILE COMMUNICATION

<table>
<thead>
<tr>
<th>Objects</th>
<th>Effects</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preloaded synaptosomes</td>
<td>Changes in calcium efflux</td>
<td>[28]</td>
</tr>
<tr>
<td>Reuber H35 hepatoma cells</td>
<td>Ornithine decarboxylase (ODC)</td>
<td>[63]</td>
</tr>
<tr>
<td>Rat brain cells</td>
<td>DNA breaks as measured with comet assay</td>
<td>[91]</td>
</tr>
<tr>
<td>AMA human epithelial cells</td>
<td>Cell proliferation</td>
<td>[111]</td>
</tr>
<tr>
<td>Human lymphocytes</td>
<td>53BP1/γ-H2AX DNA repair foci</td>
<td>[33]</td>
</tr>
<tr>
<td>Human lymphocytes</td>
<td>Changes in chromatin conformation similar to stress</td>
<td>[35]</td>
</tr>
<tr>
<td>Fisher rats</td>
<td>Nerve cell damage</td>
<td>[112]</td>
</tr>
<tr>
<td>Healthy young men</td>
<td>Regional cerebral blood flow</td>
<td>[65]</td>
</tr>
<tr>
<td>Soil nematode Caenorhabditis elegans</td>
<td>Stress response</td>
<td>[113]</td>
</tr>
<tr>
<td>Human peripheral blood cultures</td>
<td>Micronucleus frequency</td>
<td>[64]</td>
</tr>
<tr>
<td>Embryonic stem (ES) cells</td>
<td>Gene expression</td>
<td>[86]</td>
</tr>
<tr>
<td>Human diploid fibroblasts</td>
<td>DNA single- and double-strand breaks</td>
<td>[52]</td>
</tr>
<tr>
<td>Peritoneal neutrophils of mice</td>
<td>Respiratory burst induced by calcium ionophore A23187 and phorbol ester 12-myristate 13-acetate (PMA)</td>
<td>[41]</td>
</tr>
<tr>
<td>L929 fibroblasts</td>
<td>Ornithine decarboxylase (ODC)</td>
<td>[61]</td>
</tr>
<tr>
<td>Fisher rats</td>
<td>Blood-brain barrier permeability</td>
<td>[68]</td>
</tr>
<tr>
<td>Human epithelial amnion cells</td>
<td>Heat shock proteins</td>
<td>[114]</td>
</tr>
<tr>
<td>Chick forebrain tissue</td>
<td>Efflux of calcium ions</td>
<td>[115]</td>
</tr>
<tr>
<td>Mouse embryonic stem cells</td>
<td>Transient increase of DNA double-strand breaks</td>
<td>[107]</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae yeast cells KFy437</td>
<td>Enhanced UV induced apoptosis</td>
<td>[67]</td>
</tr>
</tbody>
</table>
TABLE 2

SUMMARY OF THE POLARIZATION STUDIES. NT MWs AFFECTED NUCLEOIDS IN *E. coli* CELLS AND WISTAR RAT THYMOCYTES WITHIN SPECIFIC FREQUENCY WINDOWS (RESONANCES). EACH RESONANCE WAS CHARACTERIZED BY A SPECIFIC CP (RIGHT- OR LEFT-HANDED) THAT WAS EFFECTIVE, WHILE ANOTHER CP WAS NOT.

<table>
<thead>
<tr>
<th>Cells</th>
<th>Resonance frequency, GHz</th>
<th>Effective circular polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli K12 N99(λ,λimm^{434}bio^{10})</td>
<td>41.277±0.002</td>
<td>Right-handed</td>
</tr>
<tr>
<td>Wistar rat thymocytes</td>
<td>41.303±0.001</td>
<td>Right-handed</td>
</tr>
<tr>
<td>E. coli K12 N99(λ)</td>
<td>41.305±0.001</td>
<td>Right-handed</td>
</tr>
<tr>
<td>E. coli K12 AB1157</td>
<td>41.32±0.01</td>
<td>Right-handed</td>
</tr>
<tr>
<td>E. coli K12 N99</td>
<td>41.324±0.001</td>
<td>Right-handed</td>
</tr>
<tr>
<td>Wistar rat thymocytes</td>
<td>41.61±0.01</td>
<td>Left-handed</td>
</tr>
<tr>
<td>E. coli K12 AB1157</td>
<td>51.425±0.001</td>
<td>Left-handed</td>
</tr>
<tr>
<td>E. coli K12 AB1157</td>
<td>51.575±0.001</td>
<td>Right-handed</td>
</tr>
<tr>
<td>E. coli K12 AB1157</td>
<td>51.675±0.001</td>
<td>Left-handed</td>
</tr>
<tr>
<td>E. coli K12 N99(λ,λimm^{434}bio^{10})</td>
<td>51.723±0.001</td>
<td>Left-handed</td>
</tr>
<tr>
<td>E. coli K12 N99(λ)</td>
<td>51.740±0.001</td>
<td>Left-handed</td>
</tr>
<tr>
<td>E. coli K12 AB1157</td>
<td>51.755±0.001</td>
<td>Left-handed</td>
</tr>
<tr>
<td>E. coli K12 AB1157</td>
<td>51.765±0.002</td>
<td>Left-handed</td>
</tr>
<tr>
<td>E. coli K12 AB1157</td>
<td>51.805±0.002</td>
<td>Right-handed</td>
</tr>
<tr>
<td>E. coli K12 AB1157</td>
<td>51.835±0.005</td>
<td>Left-handed</td>
</tr>
<tr>
<td>E. coli K12 AB1157</td>
<td>51.857±0.001</td>
<td>Left-handed</td>
</tr>
<tr>
<td>E. coli K12 AB1157</td>
<td>51.955±0.001</td>
<td>Right-handed</td>
</tr>
</tbody>
</table>

TABLE 3

GENOMIC DIFFERENCES INFLUENCED RESPONSE OF CELLS TO MWs. EXPERIMENTALLY DETERMINED RESONANCE FREQUENCIES, EFFECTIVE CP, AND SHIFTS BETWEEN RESONANCES FOR THREE *E. coli* STRAINS, N99, N99(λ), AND N99(λ,λ^{434}bio^{10}), WHICH WERE ISOGENIC BUT DIFFERENT IN THE LENGTH OF GENOME.

<table>
<thead>
<tr>
<th>Frequency band</th>
<th>E. coli strain and genome length, Mb:</th>
<th>N99</th>
<th>N99(λ)</th>
<th>N99(λ,λ^{434}bio^{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.240-41.370 GHz</td>
<td>N99</td>
<td>4.20</td>
<td>4.249</td>
<td>4.286</td>
</tr>
<tr>
<td></td>
<td>E. coli strain and genome length, Mb:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.690-51.795 GHz</td>
<td>Resonance frequency, GHz:</td>
<td>51.765±0.002</td>
<td>51.740±0.001</td>
<td>51.723±0.001 GHz</td>
</tr>
<tr>
<td></td>
<td>Effective circular polarization:</td>
<td>Left-handed</td>
<td>Left-handed</td>
<td>Left-handed</td>
</tr>
<tr>
<td></td>
<td>Shift in respect to N99, MHz:</td>
<td>0</td>
<td>25±3</td>
<td>42±3</td>
</tr>
</tbody>
</table>
REFERENCES

[31] I. Y. Belyaev and M. Harms-Ringdahl, "Effects of gamma rays in the 0.5-50-cGy range on the conformation of

